High Speed Corridors

Policy Issues for Safety

by

A.P. Bahadur

Former CE, DORTH
Large Traffic Volumes

High Vehicle Speed
High Speed Roads

- Characteristics
 - Multiple lanes
 - Central median
 - Full / Partial Access control
 - Restricted to Motorized Traffic.
High Speed Roads

- Types
 - Autobahns, Freeways, Motorways, Expressways.
 - Arterial roads*
 - Divided Highways*
 - 2+1 Road*

(* doubtful without control on access and traffic mix)
Requirements

- Vehicles have choice to travel safely at high (?) speeds
- Divided Carriageway
- Control on Access
- Restriction for slow moving vehicles/pedestrians/two wheelers
- Restrictions on parking
- An elaborate and clear system for Route Guidance
- User Facilities Enroute
Areas of Attention

- Planning
 - Maintaining the hierarchical system of network
- Design
 - Upfront Investment for Low Life Cycle Cost
- Safety in Construction Zone
- Operation and Maintenance
 - Safety Management
 - Traffic Management
 - Asset Management
 - Toll Operations
Challenges

• Willingness and Commitment for Safety by Planners/Designers

• Awareness for All Stake Holders on Criticality of Safety on Roads

• Maintaining smooth traffic at high speeds

• Safety of travels

• Mixing of slow and high speed traffic
Challenges

• Proactive and efficient Incident Management

• Prompt Emergency Medical Services (help)

• Land Acquisition

• Environmental Impact

• Commitment and Performance of Concessionaire on Projects under PPP
Present Approach - Lessons to be learnt

- Tendency for quick results (short term view) at lowest initial investment.
- Lowest construction cost approach.
- Stage Construction/ Development
- Use of minimum Standards instead of optimum Standards
- Disregard/ Compromise on Standards for Cost Cutting
Present Approach - Lessons to be learnt

- Hurried Investigations
- Lack of Planning and design for all categories of Road Users.
- Redesign during construction.
- Absence of life cycle costing approach to save on Cost
- Belief that Human Error is Major cause of Crashes
Crash Causing Factors – Changing Understandings

- Driver: 90%
- Vehicle: 2%
- Road: 8%

90% of crashes are caused by drivers. The remaining 10% are divided between vehicles and roads.
Safety Issues to be Addressed

- In the Approach for framing the Policy
- Formulating Policy for Infrastructure Development
- Planning, Design and Operation Stages
 - Prevention through Safety Audit
 - Reduction through Design and Provision of Safety Features
Haddon’s Matrix for System Approach

<table>
<thead>
<tr>
<th>Phase</th>
<th>Approach</th>
<th>Human</th>
<th>Vehicle</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-crash</td>
<td>Crash Prevention</td>
<td>Information Attitudes</td>
<td>Road Worthiness</td>
<td>Road layout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Police Enforcement</td>
<td>Lighting Breaking</td>
<td>Road designs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Handling Speed</td>
<td>Speed limits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Management</td>
<td>Pedestrian Facilities</td>
</tr>
<tr>
<td>Crash</td>
<td>Injury Prevention during Crash</td>
<td>Use of Restraints Impairment</td>
<td>Occupant Restraints</td>
<td>Crash protective roadside objects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other safety devices</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Crash protective designs</td>
<td></td>
</tr>
<tr>
<td>Post-crash</td>
<td>Life Sustaining</td>
<td>First aid Skill Access to Medics</td>
<td>Ease of access</td>
<td>Rescue facilities</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fire risk</td>
<td>Congestion</td>
</tr>
</tbody>
</table>
Approach for Safer Highways

- Humans (Drivers) are bound to commit mistakes and make errors

- Responsibility to be shared between Road Users and Systems Providers
 - Drivers/Other Users to follow Rules
 - Designers to provide safe road
 - Enforcing Agencies to enforce observance
Approach for Safer Highways

- Planning and Designing ‘Forgiving’ Highways
- Preventing Pedestrians and other Venerable Users from accessing highways and
- Preventing motor Vehicles from entering Pedestrian Zones
- Comprehensive Planning with a Vision
Policy Issues

- Road network be classified according to road function.
 - Flow function
 - Highs speed for through traffic between O – D pair, involving large traffic volumes
 - Distribution function
 - For entering or leaving an area
 - Access function
 - Access to residences, shops, business
- Speed limits be fixed as per road function.
- Appropriate Design to meet functional requirements by
 - Appropriate use of road.
 - Traffic Mix Management by Separation
 - Making roads predictable to avoid confusion.
Design Issues / Parameters

• Design life.
 ➢ 20 yrs a more.
 ➢ Examining for longer period.

• Design speed.
 ~ 120 Kph for Expressway.
 ~ 100 Kph for 4/6 lane Highway.
 ~ Varying for terrain type.

• Geometric standards for higher design speed.
Design Issues / Parameters

- Forgiving Highways.
- Lane Width
 3.5 m or more.
- Side Slopes – Flatter or with crash barriers.
- Shoulder width.
 - Wide on both sides of Carriageways
- Wide Median
 - Min 11m in rural (US practice)
 - Min 3m in mountainous/ urban.
 - With crash barriers
Design Issues / Parameters

- Drainage
- Clear / Safe Recovery Zone
 - 3 m to 9 m
- Pedestrian Facilities
 - Pathways
 - Foot over Bridges/ Subways
 - Provision of Escalator/ Lift
- Cattle Crossing Facilities
- Alignment passing through Wild Life Sanctuaries
 - Crossing Facilities based on Animals
Design Issues / Parameters

- Elaborate system of signs and markings for guidance to users
 - Detailed Design
 - Flengible Support Posts
- Bus facilities
 - Bus Bays
 - Safe Access for Commuters
Design / Issues / Parameters

- Rest Areas Facilities
 - Parking
 - Rest Rooms
 - Restaurants
 - Separate Access for workers
Design Issues / Parameters

- Interchanges and their spacing's
- Alignment Passing through Habitations
- Services Roads and Entry/Exit ramps
Design Issues for 4/6 Lane Highways

- Design speed.
- Geometrics to suit higher speeds.
 - Larger Horizontal and Vertical Curves
 - Wide Medians and Median Barriers
- Access Management
 - Side Roads
 - Abutting Properties
- Alignment passing through Habitation
- Alignment passing through Wild Life Sanctuaries
- Services roads
 - Continuity
 - Entry/Exit ramps.
- Segregation of vulnerable road users and Xing Facilities
Entry Ramp for Service Road

Note:
1. Detailed system of Road Markings as per IRC 35
2. Detailed system of Road Signs as per IRC 67

MINISTRY OF SHIPPING, ROAD TRANSPORT & HIGHWAYS
DEPARTMENT OF ROAD TRANSPORT & HIGHWAYS

SUGGESTIVE LAYOUT FOR EXIT RAMP FROM HIGHWAY

FIGENO: 2.1C
SCALE: Not to Scale
Exit Ramp from Service Road

Note:
1. Detailed system of Road Markings as per IRC:35
2. Detailed system of Road Signs as per IRC:07

MINISTRY OF SHIPPING, ROAD TRANSPORT & HIGHWAYS
DEPARTMENT OF ROAD TRANSPORT & HIGHWAYS

DRAWN BY:
Suggestive Layout for Entry Ramp to Highway

Figure: 2.1D
SCALE: Not to Scale
Service Road meeting at Cross Road
Service Road Crossing at Intersection

Note:
1. Detailed system of Road Markings as per IRC:35

MINISTRY OF SHIPPING, ROAD TRANSPORT & HIGHWAYS
DEPARTMENT OF ROAD TRANSPORT & HIGHWAYS

SUGGESTIVE LAYOUT OF SERVICE ROAD CONTINUING AT INTERSECTION

Figure: 23
SCALE: Not to Scale
Operational Issues

• Asset Management
 ➢ Road Maintenance
 ➢ Property Management
 ➢ Facility management

• Traffic Management
 ➢ Incident Management
 ➢ Regulation Enforcement
 ➢ Information Collection and Dissemination
 ➢ Surveillance.
Operational Issues

• Safety Management
 Ù Accident Prevention
 Ù Post-accident Care in the Golden hour
 Ù Enforcement and Education
 Ù Data Collection and Analysis

• Toll Operations
 Ù Electronic Toll Collection

• Use of ITS
 Ù Advanced Traffic Management Systems (ATMS)
 Ù Advanced Traveler Information Systems (ATIS)

• Public Relations
Thank You!